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LLM Lifecycle
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• Training

• Build a model

• Goals

• Accuracy

• Efficiency

• Inference

• Deploy a model

• Goals

• Latency & Throughput

• Efficiency



LLM Inference
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• Prefill

• Compute QKVs of prompts

• Save all KV pairs

• Generate the first token

• Decode

• Compute the next QKV

• Save this KV pair

• Generate the next token

It

is

rainy.
EOS

How is weather today?the



Challenges
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• Service-Level Objectives (SLOs)

• Latency

• Throughput

• Resource Allocation

• Memory

• CPU/GPU Compute

• Power Efficiency

• Scalability

• Auto Scaling

• Load Balancing

• Accelerator Compatibility

• NVIDIA Superchip

• NVIDIA GPU Direct RDMA



Challenges – LLM-Specific SLOs
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• Latency

• Time To First Token (TTFT)

• Time Between Token (TBT)

• Time Per Output Token (TPOT)

• Throughput

• Tokens per second



Solutions
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• Algorithms

• Decoding Algorithm

• Architecture Design

• Model Compression

• Systems

• Parallel Computation

• Memory Management

• Request Scheduling

• Kernel Optimization

• Low-bit Quantization

• Disaggregated Serving



Algorithmic Solutions
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Decoding Algorithms
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• Speculative Decoding

• Inspired by Speculative Execution

• Predict the next a few tokens

• Verify they are correct

• Example

• SpecInfer (ASPLOS ‘24)



Decoding Algorithms
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• Early Exiting / Adaptive Computation

• Outputs of early model layers suffice



Decoding Algorithms
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• Parallel Decoding

• Generate multi tokens at a time

• Cascade Inference

• Use models of different sizes



Architecture Designs
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• Configuration Downsizing

• Reduce parameters

• Attention Simplification

• Reduce quadratic computational complexity, e.g. FlashAttention, SparseTransformer

• Attention Sharing

• Reuse common attention matrices, e.g. Multi-Query A., Grouped-Query A.

• Conditional Computing

• Use only activated parameters, e.g. DeepSeek-V3, GPT-4*, Gemini-1.5

* Not officially verified



Model Compression
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• Knowledge Distillation

• Teach a small model by a large model, e.g. DeepSeek-R1-Distill-*

• Network Pruning

• Drop a subset of network weights



Limitations of Algo Solutions
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• Usually require retraining

• Usually trade accuracy for efficiency



System Solutions
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Parallel Computation
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• Pipeline Parallelism (PP)

• Move different layers onto different GPUs

• Tensor Parallelism (TP)

• Move slices of layers onto different GPUs

• Sequence Parallelism (SP)

• Move parts of a long sequence onto different GPUs

LLMPP

TP

How is today?weatherthe

GPU0 GPU1 GPU2



Memory Management
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• Model Weights and Activations

• KV Cache

• PagedAttention (vLLM, 40k stars)

• Partitions KV cache into non-contiguous memory blocks

• TokenAttention (LightLLM, 3k stars)

• Optimizes page-level attention by using token-level attention

• RadixAttention (SGLang, 11.3k stars)

• Use prefix tree to enable efficient KV cache reuse



Request Scheduling
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• Request-level Scheduling

• Treat a request as the smallest unit

• Iteration-level Scheduling

• Treat one iteration of a request as the smallest unit

• Examples

• Continuous Batching (OSDI ‘22)

• Chunked Prefill (OSDI ‘24)



Kernel Optimization
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• Kernel Fusion

• Fuse GEMMs and addition whenever possible

• Tailored Attention

• Optimize kernel implementations for attention calculations

• Variable Sequence Length 

• Batch-process sequences of various lengths



Low-bit Quantization

22

• Use fewer bits to represent model weights and activations

• Examples

• Quantization-Aware Training (QAT)

• Post-Training Quantization (PTQ)

• Reduce precision from FP32/FP16 to INT8 or INT4 or FP8



Disaggregated Serving
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• Split a LLM based on execution stages across GPUs/Nodes

• Disaggregate prefill and decode stages

• Examples

• Splitwise (ISCA ‘24)

• DistServe (OSDI ‘24)



Limitations of System Solutions
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• Unable to address model inefficiencies

• Usually require a new system to deploy



Frameworks
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Future Work
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• Development and Enhancement of Hardware Accelerators

• Efficient and Effective Decoding Algorithms

• Long Context/Sequence Scenarios Optimization

• Investigating Alternative Architectures

• Exploration of Deployment in Complex Environments

• Automatic Adaptation to Specific Requirements



Efficient Memory 
Management for Large 
Language  Model Serving 
with PagedAttention
(vLLM)

https://github.com/vllm-project/vllm 
                          40K +

https://github.com/vllm-project/vllm
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Start with KV cache
How does LLM generate?

Chinese history is

very

Suppose we input "Chinese history is“
It’s split into three tokens.

Then, it generates the next token “very”.
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Start with KV cache
How does LLM generate?

Chinese history is very

long

The word "very" is appended to the 
input, which predicts the next token

“long”
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Start with KV cache
How does LLM generate?

Chinese history is very long

,

Then, "long" is appended to the input;

With "Chinese history is very long“, the 
model predicts a comma
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Start with KV cache
How does self-attention work?

Chinese

history

is

For the first token "Chinese", it can only 
attend to itself

For the second token “history”, it uses its Q to 
query the K of "Chinese“ & “history” to 

calculate the attention weights;
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Start with KV cache
How does Transformer work?

Chinese

history

is Then, it (“history”) performs a weighted sum 
of “Chinese“ V and its own V to get output.
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Start with KV cache
How does Transformer work?

Chinese

history

is
Similarly, for the token “is", its Q queries the 

K vectors of the previous two tokens and 
itself to generate attention weights
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Start with KV cache
How does Transformer work?

Chinese

history

is

… very

Then, it computes a weighted sum of the V 
vectors of the previous two tokens and itself 

to get its output

After multiple decoder layers, it predicts the 
next token “very”
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Start with KV cache
How does Transformer work?
Chinese

history

is

very
… long

Then, “very” is appended to the input, and 
then predict next token “long” similarly.
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Start with KV cache
KV cache & Its benefit

When a new token appended to the input:
o The KV vectors of the previous tokens have already 

been computed;
o There’s no need to recompute them again. (Because 

each token only attends to the tokens before it, their 
values aren’t affected by the new token)

o In Hugging Face’s generate method, it saves the K and 
V vectors of previously generated tokens by default to 
speeds up computation, which is called KV cache.

That’s why when you have a conversation with a LLM model, 
you don’t notice a significant slowdown as the model’s 

output grows longer.



38

Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~ 
40%, most of the GPU memory in the KV cache is wasted 
for 3 reasons.

(1) Pre-allocation for max tokens
For example, if the max token count is 1000, but the 
model stops at the 100th token, when it outputs an end-
of-sequence symbol, then the KV cache for the remaining 
900 tokens is wasted.
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Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~ 
40%, most of the GPU memory in the KV cache is wasted 
for 3 reasons.

(2)  Unused reserved space blocks other requests 
Suppose a sample does output 1000 tokens, when it’s just 
starting to output the 1st token, the remaining tokens 
haven’t been used yet, which could have been processed 
in parallel with the ongoing sample.
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Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~ 
40%, most of the GPU memory in the KV cache is wasted for 
3 reasons.

(3) External fragmentation from varying prompt lengths
When a request finishes generation and releases its cache, 
but the next request’s prompt length is greater than the 
prompt length of the released request, it can’t fit into the 
freed cache space, which is external fragmentation.
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Method: vLLM
vLLM & its benefits

o Definition: vLLM is a high-throughput distributed LLM 
serving engine on top of PagedAttention that achieves 
near-zero waste in KV cache memory.

o It allows larger batch size to process requests thereby 
improving system throughput.

o Benefits:
▪ Batch Size: 8 → 40
▪ Throughput: 300 tokens/s → 900 tokens/s
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Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Problems similar to the KV cache have been encountered in 
operating systems:
o Whether pre-allocate memory for each program or not?
o How to reclaim memory after a program closes?
o How to handle memory fragmentation?
o How to maximize memory utilization?
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Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Operating systems solve this using virtual memory and 
paging techniques.

o Operating systems allocate memory in minimal units 
called pages.

o Each page is 4KB, and physical memory is divided into 
many pages.

o The memory each process needs is mapped to different 
pages.
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Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Similarly, PagedAttention divides GPU memory into KV 
blocks. 
o The KV cache is managed using KV blocks in GPU 

memory.
o The KV cache required by each request is split across 

different KV blocks in the GPU memory.
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Main module: PagedAttention
KV block

For example, each KV block can cache the KV vectors of four 
tokens.
For "Chinese history is very long", these five tokens would 
correspond to two blocks, which can be non-contiguous in 
physical GPU memory.

Chinese history is very

long

I have a dog

and two cats
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Main module: PagedAttention
KV block

When inferencing, it generates a new token, like a 
comma here. It continues to add it to the unfilled 
block, until the current block is full.

Chinese history is very

long

I have a dog

and two cats

,
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Main module: PagedAttention
Benefits

With PagedAttention, vLLM
o Overcomes the pre-allocation problem

▪ It doesn’t occupy GPU memory in advance
o Reduces memory fragmentation

▪ It’s all allocated in units of four tokens per block;
▪ Maximum fragmentation is 3 tokens.
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Main module: PagedAttention
Virtual Memory (Similar to OS)

o Logical KV cache: Appears 
contiguous to each request.

o Block table: Translates logical KV 
cache to physical KV blocks.

o Store the KV cache of two requests at 
the same time in vLLM
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vLLM
Application to Parallel sampling
o Parallel sampling generates multiple output sequences from a single prompt, 

enabling diverse outputs (e.g., translations, completions).

o The same prompt produces two different 
sequences

o In the GPU memory, only one copy of 
the prompt tokens’ KV blocks is stored

o Each block is marked as being 
referenced by two sequences

o Only when the reference count drops to 
zero is the memory occupied by that 
block released
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vLLM
Application to Parallel sampling
o Divergence begins: Samples A1 and A2 generate different tokens ("fathers" vs. "mothers")

Copy-on-write mechanism
o Sample A1 tries to write to logical block 

1 (physical block 1, count > 1) → 
Allocates new block 3, copies data from 
block 1, reduces block 1’s count to 1.

o Sample A2 writes to physical block 1 
(count now 1) → Direct write of new KV 
cache ("mothers").

o vLLM optimizes parallel sampling by sharing KV blocks for identical prompts, reducing memory waste.
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vLLM
Application to Beam Search
o Definition: Beam search decodes top-k most probable sequences in LLM tasks like machine 

translation, reducing computational complexity of traversing the full sample space.

vLLM Optimization: Extends KV block 
sharing beyond prompts, dynamically 
across beam candidates.
o Shares initial prompt block (block 0) and 

other blocks (e.g., blocks 1, 3, 6, 7) as 
decoding progresses

o Reduces frequent memory copies in 
traditional systems (e.g., candidate 3 
copying candidate 2’s KV cache).
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Key Results

o Near-zero memory waste (20.4%-38.2% → ~100% usage)
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Key Results

o higher request rates: Compared to FasterTransformer, vLLM can sustain up to 22× higher request rates

o More: Lower costs, higher scalability for LLM applications…



A SURVEY ON LARGE 
LANGUAGE MODEL 
ACCELERATION BASED ON 
KV CACHE MANAGEMENT



A Survey on Large Language Model Acceleration 
based on KV Cache Management

• Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole 
Hu, Wei Dong, Qing Li Fellow, IEEE, Lei Chen Fellow, IEEE

• Improving LLMs through KV Cache
oHeavy hardware demands by LLMs
oChallenge to scale up 
oMake LLMs aware of resources used

•KV Cache Management Strategies
o Token level
oModel level
o System level

61
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Introduction
Preliminary
Taxonomy
Token Level Optimization
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Introduction

• Transformer Architecture
o Excels at capturing long-term 

dependencies 

o Heavy computation and 
memory demands

• Key-Value Pairs (KV)
o Critical bottleneck in LLM 

inference 

o Caching technique that allows 
model to use past results

64
https://huggingface.co/blog/kv-cache-quantization



Preliminary

• Transformer Architecture
o Most LLMs follow a decoder only component

o Composed of stacked Transformer blocks

• Auto-regressive Generation Mechanism
o LLMs generate text token by token

o Tokens depend on previously generate 
tokens

o Predict next token by applying a softmax

o Repeat until EOS or max length of response

65



KV Cache in Transformer Models

• How KV caching accelerates LLMs' inferencing
o LLM performs self-attention over the entire token sequence every token

o Saves previous KV matrices, and reuses instead of recalculating again

• Time and Space Analysis
o Time saved is directly proportional to cached tokens

o Space depends on number of cached tokens and precision 

• Challenges
o Managing memory as sequence lengths grow 

o Cache Eviction Policies, Memory Management, Latency Bottlenecks

o Compression Trade-offs, Dynamic Workloads, Distributed Coordination

66



Formulas of Time and Space Analysis

• Time Space

67



Token 
Level 

Optimizati
on

68



KV Cache Selection

• Goals: Reduce memory utilization, inference latency, enhance throughput

• Static KV Cache Selection
o One time compression on KV Cache after initial caching
o Pattern aware and importance scoring

• Dynamic Selection with Permanent Eviction
o Continuously update KV Cache during decoding phase
o Sliding window, accumulative attention scores, diversified random eviction

• Dynamic Selection without Permanent Eviction
o Irreversible eviction of tokens potentially impairs model performance on long sequence tasks
o Block-level caching, multi-tier storage, clustering methods

• Challenges: Validation on multi-turn dialogue and extended decoding lengths

https://arxiv.org/html/2404.04793v1
69
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KV Cache Budget Allocation

• Goals: Improve inherent heterogeneity across LLM layers' KV Caches

• Layer-wise Budget Allocation
o Assign different compression ratios across model layers
o Pyramid shaped memory, attention patterns, per layer token identification

• Head-wise Budget Allocation
o Finer allocations, precise distribution across individual attention heads within each layer
o Retrieval head-based methods are specialized category – key information extraction
o Thresholding, minimize output deviations, retrieval head support

• Challenges: Pyramid vs. Retrieval 
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KV Cache Merging

• Goals: Compress KV Caches without degrading accuracy

• Intra-layer Merging
o Consolidating KV Caches within individual layers

o Special indicator compression, merging tokens, attention head clusters

• Cross-layer Merging
o Targets redundancy across layers

o Combine middle to deep layers and combines very dissimilar layers

• Challenges: Adaptive merging and Preservation of critical 
information guarantee

72
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KV Cache Quantization

• Goals: Reduce numeric precision to drastically reduce memory size

• Fixed-precision
o All KVs are quantized to the same bit-width: often suboptimal

o Per-token individual, product quantization

• Mixed-precision
o Higher precision to critical parts of the cache

o Per channel, per impact, per layer

• Outlier redistribution
o Smooths the outliers in KVs to improve quantization quality

o Virtual tokens, redistribute outlier values, transformations

• Challenges: Real-time adaptive, multi-modal, hybrid methods

74
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KV Cache Low-Rank Decomposition
• Goals: Reduce memory requirements while preserving critical information

• Singular Value Decomposition
o Use low-rank structure of KV matrices to retain most critical singular values

o Group heads, adaptive hybrid compression, weight matrix replacement

• Tensor Decomposition
o Factorizes KV matrices into smaller components to reduce redundancy

o Matrix product operator, KV to local tensors, quantization combination

• Learned Low-Rank Approximation
o Incorporates adaptive mechanisms to optimize compression with learned representations

o Learned-kernel-based low rank approximation to approximate the softmax function

• Challenges: Dynamic rank adjustment, real-time/streaming applications

76
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Model 
Level 

Optimizati
on
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Attention Grouping and Sharing

• Intra-Layer Grouping
o Grouping query, key, and value heads within layers -> reduce redundancy

• Cross-Layer Sharing
o Sharing query, key, and value components across layers

• Goals: Reduce redundancy, improve efficiency/reuse, reduce KV cache 
requirements

• Challenges: Performance/efficiency tradeoff, scalability, timestep variations in 
transformer

80



Intra-Layer Grouping: MQA/GQA

• Multi-Query Attention (MQA)
o All attention heads in transformer block share a single key and value

o Fast decoding + low cache requirements, but unstable

• Grouped Query Attention (GQA) improves on MQA
o Divide attention heads into groups, share key and values within groups

o Uptraining processes proposed to convert traditional multiheaded attention to GQA

• Result: GQA model performed as well as MHA and as fast as MQA

81
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Cross-Layer Sharing

• Cross-Layer Attention (CLA)
oShare key and value heads across transformer layers

o2X KV Cache size reduction compared to MQA
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Architecture Alteration

• Enhanced Attention Mechanisms
o DeepSeek-V2 Multi-Head Latent Attention (MLA)

• Augmented Architectures

• Enables longer context window and faster inference time

• Difficult to implement into existing pretrained models

84
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Non-Transformer Architectures

• Paper focused on architectures that highly compress or compensate for 
having KV cache

• Combine RNN efficient sequence processing + attention mechanisms 
parallelizable training
o Receptance Weighted Key Value (RWKV)

o Mamba: selectively propagate/forget parameters, performs well on 1M token sequence

• Hybrid Models
o MixCon: dynamic and high control

o RecurFormer: identify and replace weak attention heads

86
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System 
Level 

Optimizati
on
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Memory Management: Architectural 
Designs

PagedAttention vLLM vTensor

Partition KV cache into 
fixed blocks in 
physical memory

Virtual memory 
system to manage KV 
blocks, enables 
dynamic allocation

Scheduler to generate 
memory management 
policies, translates 
into CUDA VMM 
operations 

89
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Scheduling

• Prefix Aware
o BatchLLM: identify global prefixes, schedule cache based on common prefixes

• Preemptive and Fairness Oriented
o FastServe coordinates cache movement between GPU/host memory

o FastSwitch balances efficient memory with smooth context switches

• Layer-Specific and Hierarchical
o LayerKV allocates cache block by layers rather than whole prompt level

• Goals: reduce latency, maximize resource availability

91
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Hardware-Aware Design

• Goal: Optimize KV cache/cache management based on hardware specifications

• Single/Multi GPU designs
o Efficient memory access patterns and load balancing

• IO-Based Designs
o Optimize data movement across memory hierarchies (CPU, GPU, disk, etc)

• Heterogenous Designs
o Maximize resource utilization via CPU-GPU collaboration

• SSD-Based Solutions
o Extending hierarchy across GPU, CPU => optimize LLM inference on constrained hardware

93



94



Datasets 
and 

Benchmark
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Question Answering Tasks

• Model given document(s) and 
question(s) as input

• Answer either closed (multiple 
choice) or open ended 
depending on question

• Single document (QA-SG) vs 
multi document (QA-MT)
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Text Summarization Tasks
• Datasets include curated 

selection of texts and 
corresponding summaries

97



Text Reasoning Tasks
• Given text, model tested on 

solving problems, drawing 
logical conclusions, making 
inferences

• Finding patterns, relationships 
rules

• Natural Language Inferencing 
(NLI)
o Determine relationship between 

premise and hypothesis texts
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Text Retrieval Tasks
• Retrieve information from a 

large amount of data, tests 
query understanding and 
efficiency in identifying 
relevant text
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Text Generation Tasks
• Generate content based on 

task specifications

• Includes natural language and 
code generation
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Aggregation Tasks
• Aggregate varying 

information from dataset to 
answer complex questions

oEx: What percentage of 
comments in a dataset of 
comments are positive?
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Multimodal Dataset Tasks

• Datasets include image, text, 
and video formats

• Testing description, reasoning, 
conversation, perception, 
prediction among other tasks

102



Thank you!
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