
LLM MODEL
SERVING

Team 6
Fengyu Gao, Shunqiang Feng, Wei Shen, Zihan Zhao

Team5 Previous KV Survey

Towards Efficient
Generative Large
Language Model
Serving: A Survey from
Algorithms to Systems

Zihan Zhao (rxy6cc)

3

LLM Lifecycle

4

• Training

• Build a model

• Goals

• Accuracy

• Efficiency

• Inference

• Deploy a model

• Goals

• Latency & Throughput

• Efficiency

LLM Inference

5

• Prefill

• Compute QKVs of prompts

• Save all KV pairs

• Generate the first token

• Decode

• Compute the next QKV

• Save this KV pair

• Generate the next token

It

is

rainy.
EOS

How is weather today?the

Challenges

6

• Service-Level Objectives (SLOs)

• Latency

• Throughput

• Resource Allocation

• Memory

• CPU/GPU Compute

• Power Efficiency

• Scalability

• Auto Scaling

• Load Balancing

• Accelerator Compatibility

• NVIDIA Superchip

• NVIDIA GPU Direct RDMA

Challenges – LLM-Specific SLOs

8

• Latency

• Time To First Token (TTFT)

• Time Between Token (TBT)

• Time Per Output Token (TPOT)

• Throughput

• Tokens per second

Solutions

9

• Algorithms

• Decoding Algorithm

• Architecture Design

• Model Compression

• Systems

• Parallel Computation

• Memory Management

• Request Scheduling

• Kernel Optimization

• Low-bit Quantization

• Disaggregated Serving

Algorithmic Solutions

10

Decoding Algorithms

11

• Speculative Decoding

• Inspired by Speculative Execution

• Predict the next a few tokens

• Verify they are correct

• Example

• SpecInfer (ASPLOS ‘24)

Decoding Algorithms

12

• Early Exiting / Adaptive Computation

• Outputs of early model layers suffice

Decoding Algorithms

13

• Parallel Decoding

• Generate multi tokens at a time

• Cascade Inference

• Use models of different sizes

Architecture Designs

14

• Configuration Downsizing

• Reduce parameters

• Attention Simplification

• Reduce quadratic computational complexity, e.g. FlashAttention, SparseTransformer

• Attention Sharing

• Reuse common attention matrices, e.g. Multi-Query A., Grouped-Query A.

• Conditional Computing

• Use only activated parameters, e.g. DeepSeek-V3, GPT-4*, Gemini-1.5

* Not officially verified

Model Compression

15

• Knowledge Distillation

• Teach a small model by a large model, e.g. DeepSeek-R1-Distill-*

• Network Pruning

• Drop a subset of network weights

Limitations of Algo Solutions

16

• Usually require retraining

• Usually trade accuracy for efficiency

System Solutions

17

Parallel Computation

18

• Pipeline Parallelism (PP)

• Move different layers onto different GPUs

• Tensor Parallelism (TP)

• Move slices of layers onto different GPUs

• Sequence Parallelism (SP)

• Move parts of a long sequence onto different GPUs

LLMPP

TP

How is today?weatherthe

GPU0 GPU1 GPU2

Memory Management

19

• Model Weights and Activations

• KV Cache

• PagedAttention (vLLM, 40k stars)

• Partitions KV cache into non-contiguous memory blocks

• TokenAttention (LightLLM, 3k stars)

• Optimizes page-level attention by using token-level attention

• RadixAttention (SGLang, 11.3k stars)

• Use prefix tree to enable efficient KV cache reuse

Request Scheduling

20

• Request-level Scheduling

• Treat a request as the smallest unit

• Iteration-level Scheduling

• Treat one iteration of a request as the smallest unit

• Examples

• Continuous Batching (OSDI ‘22)

• Chunked Prefill (OSDI ‘24)

Kernel Optimization

21

• Kernel Fusion

• Fuse GEMMs and addition whenever possible

• Tailored Attention

• Optimize kernel implementations for attention calculations

• Variable Sequence Length

• Batch-process sequences of various lengths

Low-bit Quantization

22

• Use fewer bits to represent model weights and activations

• Examples

• Quantization-Aware Training (QAT)

• Post-Training Quantization (PTQ)

• Reduce precision from FP32/FP16 to INT8 or INT4 or FP8

Disaggregated Serving

23

• Split a LLM based on execution stages across GPUs/Nodes

• Disaggregate prefill and decode stages

• Examples

• Splitwise (ISCA ‘24)

• DistServe (OSDI ‘24)

Limitations of System Solutions

24

• Unable to address model inefficiencies

• Usually require a new system to deploy

Frameworks

25

Future Work

26

• Development and Enhancement of Hardware Accelerators

• Efficient and Effective Decoding Algorithms

• Long Context/Sequence Scenarios Optimization

• Investigating Alternative Architectures

• Exploration of Deployment in Complex Environments

• Automatic Adaptation to Specific Requirements

Efficient Memory
Management for Large
Language Model Serving
with PagedAttention
(vLLM)

https://github.com/vllm-project/vllm
 40K +

https://github.com/vllm-project/vllm

Shunqiang Feng (mpp7ez)

28

29

Start with KV cache
How does LLM generate?

Chinese history is

very

Suppose we input "Chinese history is“
It’s split into three tokens.

Then, it generates the next token “very”.

30

Start with KV cache
How does LLM generate?

Chinese history is very

long

The word "very" is appended to the
input, which predicts the next token

“long”

31

Start with KV cache
How does LLM generate?

Chinese history is very long

,

Then, "long" is appended to the input;

With "Chinese history is very long“, the
model predicts a comma

32

Start with KV cache
How does self-attention work?

Chinese

history

is

For the first token "Chinese", it can only
attend to itself

For the second token “history”, it uses its Q to
query the K of "Chinese“ & “history” to

calculate the attention weights;

33

Start with KV cache
How does Transformer work?

Chinese

history

is Then, it (“history”) performs a weighted sum
of “Chinese“ V and its own V to get output.

34

Start with KV cache
How does Transformer work?

Chinese

history

is
Similarly, for the token “is", its Q queries the

K vectors of the previous two tokens and
itself to generate attention weights

35

Start with KV cache
How does Transformer work?

Chinese

history

is

… very

Then, it computes a weighted sum of the V
vectors of the previous two tokens and itself

to get its output

After multiple decoder layers, it predicts the
next token “very”

36

Start with KV cache
How does Transformer work?
Chinese

history

is

very
… long

Then, “very” is appended to the input, and
then predict next token “long” similarly.

37

Start with KV cache
KV cache & Its benefit

When a new token appended to the input:
o The KV vectors of the previous tokens have already

been computed;
o There’s no need to recompute them again. (Because

each token only attends to the tokens before it, their
values aren’t affected by the new token)

o In Hugging Face’s generate method, it saves the K and
V vectors of previously generated tokens by default to
speeds up computation, which is called KV cache.

That’s why when you have a conversation with a LLM model,
you don’t notice a significant slowdown as the model’s

output grows longer.

38

Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~
40%, most of the GPU memory in the KV cache is wasted
for 3 reasons.

(1) Pre-allocation for max tokens
For example, if the max token count is 1000, but the
model stops at the 100th token, when it outputs an end-
of-sequence symbol, then the KV cache for the remaining
900 tokens is wasted.

39

Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~
40%, most of the GPU memory in the KV cache is wasted
for 3 reasons.

(2) Unused reserved space blocks other requests
Suppose a sample does output 1000 tokens, when it’s just
starting to output the 1st token, the remaining tokens
haven’t been used yet, which could have been processed
in parallel with the ongoing sample.

40

Problem
Low utilization rate of KV cache

The actual utilization rate of the KV cache is only 20% ~
40%, most of the GPU memory in the KV cache is wasted for
3 reasons.

(3) External fragmentation from varying prompt lengths
When a request finishes generation and releases its cache,
but the next request’s prompt length is greater than the
prompt length of the released request, it can’t fit into the
freed cache space, which is external fragmentation.

41

Method: vLLM
vLLM & its benefits

o Definition: vLLM is a high-throughput distributed LLM
serving engine on top of PagedAttention that achieves
near-zero waste in KV cache memory.

o It allows larger batch size to process requests thereby
improving system throughput.

o Benefits:
▪ Batch Size: 8 → 40
▪ Throughput: 300 tokens/s → 900 tokens/s

42

Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Problems similar to the KV cache have been encountered in
operating systems:
o Whether pre-allocate memory for each program or not?
o How to reclaim memory after a program closes?
o How to handle memory fragmentation?
o How to maximize memory utilization?

43

Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Operating systems solve this using virtual memory and
paging techniques.

o Operating systems allocate memory in minimal units
called pages.

o Each page is 4KB, and physical memory is divided into
many pages.

o The memory each process needs is mapped to different
pages.

44

Main module: PagedAttention
Inspired by OS Virtual Memory & Paging

Similarly, PagedAttention divides GPU memory into KV
blocks.
o The KV cache is managed using KV blocks in GPU

memory.
o The KV cache required by each request is split across

different KV blocks in the GPU memory.

45

Main module: PagedAttention
KV block

For example, each KV block can cache the KV vectors of four
tokens.
For "Chinese history is very long", these five tokens would
correspond to two blocks, which can be non-contiguous in
physical GPU memory.

Chinese history is very

long

I have a dog

and two cats

46

Main module: PagedAttention
KV block

When inferencing, it generates a new token, like a
comma here. It continues to add it to the unfilled
block, until the current block is full.

Chinese history is very

long

I have a dog

and two cats

,

47

Main module: PagedAttention
Benefits

With PagedAttention, vLLM
o Overcomes the pre-allocation problem

▪ It doesn’t occupy GPU memory in advance
o Reduces memory fragmentation

▪ It’s all allocated in units of four tokens per block;
▪ Maximum fragmentation is 3 tokens.

48

Main module: PagedAttention
Virtual Memory (Similar to OS)

o Logical KV cache: Appears
contiguous to each request.

o Block table: Translates logical KV
cache to physical KV blocks.

o Store the KV cache of two requests at
the same time in vLLM

49

vLLM
Application to Parallel sampling
o Parallel sampling generates multiple output sequences from a single prompt,

enabling diverse outputs (e.g., translations, completions).

o The same prompt produces two different
sequences

o In the GPU memory, only one copy of
the prompt tokens’ KV blocks is stored

o Each block is marked as being
referenced by two sequences

o Only when the reference count drops to
zero is the memory occupied by that
block released

50

vLLM
Application to Parallel sampling
o Divergence begins: Samples A1 and A2 generate different tokens ("fathers" vs. "mothers")

Copy-on-write mechanism
o Sample A1 tries to write to logical block

1 (physical block 1, count > 1) →
Allocates new block 3, copies data from
block 1, reduces block 1’s count to 1.

o Sample A2 writes to physical block 1
(count now 1) → Direct write of new KV
cache ("mothers").

o vLLM optimizes parallel sampling by sharing KV blocks for identical prompts, reducing memory waste.

51

vLLM
Application to Beam Search
o Definition: Beam search decodes top-k most probable sequences in LLM tasks like machine

translation, reducing computational complexity of traversing the full sample space.

vLLM Optimization: Extends KV block
sharing beyond prompts, dynamically
across beam candidates.
o Shares initial prompt block (block 0) and

other blocks (e.g., blocks 1, 3, 6, 7) as
decoding progresses

o Reduces frequent memory copies in
traditional systems (e.g., candidate 3
copying candidate 2’s KV cache).

52

Key Results

o Near-zero memory waste (20.4%-38.2% → ~100% usage)

53

Key Results

o higher request rates: Compared to FasterTransformer, vLLM can sustain up to 22× higher request rates

o More: Lower costs, higher scalability for LLM applications…

A SURVEY ON LARGE
LANGUAGE MODEL
ACCELERATION BASED ON
KV CACHE MANAGEMENT

A Survey on Large Language Model Acceleration
based on KV Cache Management

• Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole
Hu, Wei Dong, Qing Li Fellow, IEEE, Lei Chen Fellow, IEEE

• Improving LLMs through KV Cache
oHeavy hardware demands by LLMs
oChallenge to scale up
oMake LLMs aware of resources used

•KV Cache Management Strategies
o Token level
oModel level
o System level

61

Akira Durham
zup9su

62

Introduction
Preliminary
Taxonomy
Token Level Optimization

63

Introduction

• Transformer Architecture
o Excels at capturing long-term

dependencies

o Heavy computation and
memory demands

• Key-Value Pairs (KV)
o Critical bottleneck in LLM

inference

o Caching technique that allows
model to use past results

64
https://huggingface.co/blog/kv-cache-quantization

Preliminary

• Transformer Architecture
o Most LLMs follow a decoder only component

o Composed of stacked Transformer blocks

• Auto-regressive Generation Mechanism
o LLMs generate text token by token

o Tokens depend on previously generate
tokens

o Predict next token by applying a softmax

o Repeat until EOS or max length of response

65

KV Cache in Transformer Models

• How KV caching accelerates LLMs' inferencing
o LLM performs self-attention over the entire token sequence every token

o Saves previous KV matrices, and reuses instead of recalculating again

• Time and Space Analysis
o Time saved is directly proportional to cached tokens

o Space depends on number of cached tokens and precision

• Challenges
o Managing memory as sequence lengths grow

o Cache Eviction Policies, Memory Management, Latency Bottlenecks

o Compression Trade-offs, Dynamic Workloads, Distributed Coordination

66

Formulas of Time and Space Analysis

• Time Space

67

Token
Level

Optimizati
on

68

KV Cache Selection

• Goals: Reduce memory utilization, inference latency, enhance throughput

• Static KV Cache Selection
o One time compression on KV Cache after initial caching
o Pattern aware and importance scoring

• Dynamic Selection with Permanent Eviction
o Continuously update KV Cache during decoding phase
o Sliding window, accumulative attention scores, diversified random eviction

• Dynamic Selection without Permanent Eviction
o Irreversible eviction of tokens potentially impairs model performance on long sequence tasks
o Block-level caching, multi-tier storage, clustering methods

• Challenges: Validation on multi-turn dialogue and extended decoding lengths

https://arxiv.org/html/2404.04793v1
69

70

KV Cache Budget Allocation

• Goals: Improve inherent heterogeneity across LLM layers' KV Caches

• Layer-wise Budget Allocation
o Assign different compression ratios across model layers
o Pyramid shaped memory, attention patterns, per layer token identification

• Head-wise Budget Allocation
o Finer allocations, precise distribution across individual attention heads within each layer
o Retrieval head-based methods are specialized category – key information extraction
o Thresholding, minimize output deviations, retrieval head support

• Challenges: Pyramid vs. Retrieval

71

KV Cache Merging

• Goals: Compress KV Caches without degrading accuracy

• Intra-layer Merging
o Consolidating KV Caches within individual layers

o Special indicator compression, merging tokens, attention head clusters

• Cross-layer Merging
o Targets redundancy across layers

o Combine middle to deep layers and combines very dissimilar layers

• Challenges: Adaptive merging and Preservation of critical
information guarantee

72

73

KV Cache Quantization

• Goals: Reduce numeric precision to drastically reduce memory size

• Fixed-precision
o All KVs are quantized to the same bit-width: often suboptimal

o Per-token individual, product quantization

• Mixed-precision
o Higher precision to critical parts of the cache

o Per channel, per impact, per layer

• Outlier redistribution
o Smooths the outliers in KVs to improve quantization quality

o Virtual tokens, redistribute outlier values, transformations

• Challenges: Real-time adaptive, multi-modal, hybrid methods

74

75

KV Cache Low-Rank Decomposition
• Goals: Reduce memory requirements while preserving critical information

• Singular Value Decomposition
o Use low-rank structure of KV matrices to retain most critical singular values

o Group heads, adaptive hybrid compression, weight matrix replacement

• Tensor Decomposition
o Factorizes KV matrices into smaller components to reduce redundancy

o Matrix product operator, KV to local tensors, quantization combination

• Learned Low-Rank Approximation
o Incorporates adaptive mechanisms to optimize compression with learned representations

o Learned-kernel-based low rank approximation to approximate the softmax function

• Challenges: Dynamic rank adjustment, real-time/streaming applications

76

Sahlar Salehi
rmh7ce

77

78

Model
Level

Optimizati
on

79

Attention Grouping and Sharing

• Intra-Layer Grouping
o Grouping query, key, and value heads within layers -> reduce redundancy

• Cross-Layer Sharing
o Sharing query, key, and value components across layers

• Goals: Reduce redundancy, improve efficiency/reuse, reduce KV cache
requirements

• Challenges: Performance/efficiency tradeoff, scalability, timestep variations in
transformer

80

Intra-Layer Grouping: MQA/GQA

• Multi-Query Attention (MQA)
o All attention heads in transformer block share a single key and value

o Fast decoding + low cache requirements, but unstable

• Grouped Query Attention (GQA) improves on MQA
o Divide attention heads into groups, share key and values within groups

o Uptraining processes proposed to convert traditional multiheaded attention to GQA

• Result: GQA model performed as well as MHA and as fast as MQA

81

82

Cross-Layer Sharing

• Cross-Layer Attention (CLA)
oShare key and value heads across transformer layers

o2X KV Cache size reduction compared to MQA

83

Architecture Alteration

• Enhanced Attention Mechanisms
o DeepSeek-V2 Multi-Head Latent Attention (MLA)

• Augmented Architectures

• Enables longer context window and faster inference time

• Difficult to implement into existing pretrained models

84

85

Non-Transformer Architectures

• Paper focused on architectures that highly compress or compensate for
having KV cache

• Combine RNN efficient sequence processing + attention mechanisms
parallelizable training
o Receptance Weighted Key Value (RWKV)

o Mamba: selectively propagate/forget parameters, performs well on 1M token sequence

• Hybrid Models
o MixCon: dynamic and high control

o RecurFormer: identify and replace weak attention heads

86

87

System
Level

Optimizati
on

88

Memory Management: Architectural
Designs

PagedAttention vLLM vTensor

Partition KV cache into
fixed blocks in
physical memory

Virtual memory
system to manage KV
blocks, enables
dynamic allocation

Scheduler to generate
memory management
policies, translates
into CUDA VMM
operations

89

90

Scheduling

• Prefix Aware
o BatchLLM: identify global prefixes, schedule cache based on common prefixes

• Preemptive and Fairness Oriented
o FastServe coordinates cache movement between GPU/host memory

o FastSwitch balances efficient memory with smooth context switches

• Layer-Specific and Hierarchical
o LayerKV allocates cache block by layers rather than whole prompt level

• Goals: reduce latency, maximize resource availability

91

92

Hardware-Aware Design

• Goal: Optimize KV cache/cache management based on hardware specifications

• Single/Multi GPU designs
o Efficient memory access patterns and load balancing

• IO-Based Designs
o Optimize data movement across memory hierarchies (CPU, GPU, disk, etc)

• Heterogenous Designs
o Maximize resource utilization via CPU-GPU collaboration

• SSD-Based Solutions
o Extending hierarchy across GPU, CPU => optimize LLM inference on constrained hardware

93

94

Datasets
and

Benchmark

95

Question Answering Tasks

• Model given document(s) and
question(s) as input

• Answer either closed (multiple
choice) or open ended
depending on question

• Single document (QA-SG) vs
multi document (QA-MT)

96

Text Summarization Tasks
• Datasets include curated

selection of texts and
corresponding summaries

97

Text Reasoning Tasks
• Given text, model tested on

solving problems, drawing
logical conclusions, making
inferences

• Finding patterns, relationships
rules

• Natural Language Inferencing
(NLI)
o Determine relationship between

premise and hypothesis texts

98

Text Retrieval Tasks
• Retrieve information from a

large amount of data, tests
query understanding and
efficiency in identifying
relevant text

99

Text Generation Tasks
• Generate content based on

task specifications

• Includes natural language and
code generation

100

Aggregation Tasks
• Aggregate varying

information from dataset to
answer complex questions

oEx: What percentage of
comments in a dataset of
comments are positive?

101

Multimodal Dataset Tasks

• Datasets include image, text,
and video formats

• Testing description, reasoning,
conversation, perception,
prediction among other tasks

102

Thank you!

	Slide 1: LLM Model Serving
	Slide 2: Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems
	Slide 3: Zihan Zhao (rxy6cc)
	Slide 4: LLM Lifecycle
	Slide 5: LLM Inference
	Slide 6: Challenges
	Slide 8: Challenges – LLM-Specific SLOs
	Slide 9: Solutions
	Slide 10: Algorithmic Solutions
	Slide 11: Decoding Algorithms
	Slide 12: Decoding Algorithms
	Slide 13: Decoding Algorithms
	Slide 14: Architecture Designs
	Slide 15: Model Compression
	Slide 16: Limitations of Algo Solutions
	Slide 17: System Solutions
	Slide 18: Parallel Computation
	Slide 19: Memory Management
	Slide 20: Request Scheduling
	Slide 21: Kernel Optimization
	Slide 22: Low-bit Quantization
	Slide 23: Disaggregated Serving
	Slide 24: Limitations of System Solutions
	Slide 25: Frameworks
	Slide 26: Future Work
	Slide 27: Efficient Memory Management for Large Language Model Serving with PagedAttention (vLLM) https://github.com/vllm-project/vllm 40K +
	Slide 28: Shunqiang Feng (mpp7ez)
	Slide 29: Start with KV cache How does LLM generate?
	Slide 30: Start with KV cache How does LLM generate?
	Slide 31: Start with KV cache How does LLM generate?
	Slide 32: Start with KV cache How does self-attention work?
	Slide 33: Start with KV cache How does Transformer work?
	Slide 34: Start with KV cache How does Transformer work?
	Slide 35: Start with KV cache How does Transformer work?
	Slide 36: Start with KV cache How does Transformer work?
	Slide 37: Start with KV cache KV cache & Its benefit
	Slide 38: Problem Low utilization rate of KV cache
	Slide 39: Problem Low utilization rate of KV cache
	Slide 40: Problem Low utilization rate of KV cache
	Slide 41: Method: vLLM vLLM & its benefits
	Slide 42: Main module: PagedAttention Inspired by OS Virtual Memory & Paging
	Slide 43: Main module: PagedAttention Inspired by OS Virtual Memory & Paging
	Slide 44: Main module: PagedAttention Inspired by OS Virtual Memory & Paging
	Slide 45: Main module: PagedAttention KV block
	Slide 46: Main module: PagedAttention KV block
	Slide 47: Main module: PagedAttention Benefits
	Slide 48: Main module: PagedAttention Virtual Memory (Similar to OS)
	Slide 49: vLLM Application to Parallel sampling
	Slide 50: vLLM Application to Parallel sampling
	Slide 51: vLLM Application to Beam Search
	Slide 52: Key Results
	Slide 53: Key Results
	Slide 54: One Model serving framework
	Slide 55: Operator
	Slide 56: How Operator Works
	Slide 57: Operator - Code
	Slide 58: Operator - Sending a Request
	Slide 59: Operator - Auto-Scaling Mechanism
	Slide 60: A Survey on Large Language Model Acceleration based on KV Cache Management
	Slide 61: A Survey on Large Language Model Acceleration based on KV Cache Management
	Slide 62: Akira Durham zup9su
	Slide 63
	Slide 64: Introduction
	Slide 65: Preliminary
	Slide 66: KV Cache in Transformer Models
	Slide 67: Formulas of Time and Space Analysis
	Slide 68: Token Level Optimization
	Slide 69: KV Cache Selection
	Slide 70
	Slide 71: KV Cache Budget Allocation
	Slide 72: KV Cache Merging
	Slide 73
	Slide 74: KV Cache Quantization
	Slide 75
	Slide 76: KV Cache Low-Rank Decomposition
	Slide 77: Sahlar Salehi rmh7ce
	Slide 78
	Slide 79: Model Level Optimization
	Slide 80: Attention Grouping and Sharing
	Slide 81: Intra-Layer Grouping: MQA/GQA
	Slide 82
	Slide 83: Cross-Layer Sharing
	Slide 84: Architecture Alteration
	Slide 85
	Slide 86: Non-Transformer Architectures
	Slide 87
	Slide 88: System Level Optimization
	Slide 89: Memory Management: Architectural Designs
	Slide 90
	Slide 91: Scheduling
	Slide 92
	Slide 93: Hardware-Aware Design
	Slide 94
	Slide 95: Datasets and Benchmark
	Slide 96: Question Answering Tasks
	Slide 97: Text Summarization Tasks
	Slide 98: Text Reasoning Tasks
	Slide 99: Text Retrieval Tasks
	Slide 100: Text Generation Tasks
	Slide 101: Aggregation Tasks
	Slide 102: Multimodal Dataset Tasks
	Slide 103: Thank you!

